荟聚奇文、博采众长、见贤思齐
当前位置:公文素材库 > 计划总结 > 工作总结 > 函数与导数知识点总结

函数与导数知识点总结

网站:公文素材库 | 时间:2019-05-28 13:18:34 | 移动端:函数与导数知识点总结

函数与导数知识点总结

函数与导数

1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;

⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法3.复合函数的有关问题(1)复合函数定义域求法:①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。(2)复合函数单调性的判定:

①首先将原函数分解为基本函数:内函数与外函数;②分别研究内、外函数在各自定义域内的单调性;

③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。注意:外函数的定义域是内函数的值域。4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。5.函数的奇偶性

⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵是奇函数;⑶是偶函数;

⑷奇函数在原点有定义,则;

⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;6.函数的单调性⑴单调性的定义:

①在区间上是增函数当时有;②在区间上是减函数当时有;⑵单调性的判定1定义法:

注意:一般要将式子化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法(见2(2));④图像法。

注:证明单调性主要用定义法和导数法。7.函数的周期性(1)周期性的定义:

对定义域内的任意,若有(其中为非零常数),则称函数为周期函数,为它的一个周期。

所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周(2)三角函数的周期:⑶函数周期的判定

①定义法(试值)②图像法③公式法(利用(2)中结论)⑷与周期有关的结论

8.基本初等函数的图像与性质

⑴幂函数:(;⑵指数函数:;⑶对数函数:;⑷正弦函数:;⑸余弦函数:;(6)正切函数:;⑺一元二次函数:;⑻其它常用函数:

①正比例函数:;②反比例函数:9.二次函数:⑴解析式:

①一般式:;②顶点式:,为顶点;③零点式:。

⑵二次函数问题解决需考虑的因素:

①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。⑶二次函数问题解决方法:①数形结合;②分类讨论。10.函数图象:

⑴图象作法:①描点法(特别注意三角函数的五点作图)②图象变换法③导数法⑵图象变换:

①平移变换:“正左负右”“正上负下”;②伸缩变换:

,(纵坐标不变,横坐标伸长为原来的倍;,(横坐标不变,纵坐标伸长为原来的倍;③对称变换:④翻转变换:

右不动,右向左翻(在左侧图象去掉);上不动,下向上翻(||在下面无图象);11.函数图象(曲线)对称性的证明

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明函数与图象的对称性,即证明图象上任意点关于对称中心(对称轴)的对称点在的图象上,反之亦然;注:

①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x,y)=0;

③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

④f(a+x)=f(b-x)(x∈R)y=f(x)图像关于直线x=对称;

特别地:f(a+x)=f(a-x)(x∈R)y=f(x)图像关于直线x=a对称;⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;12.函数零点的求法:⑴直接法(求的根);⑵图象法;⑶二分法.13.导数

⑴导数定义:f(x)在点x0处的导数记作;⑵常见函数的导数公式:①;②;③;④;⑤;⑥;⑦;⑧。

⑶导数的四则运算法则:

⑷(理科)复合函数的导数:

⑸导数的应用:

①利用导数求切线:注意:所给点是切点吗?所求的是“在”还是“过”该点的切线?②利用导数判断函数单调性:是增函数;为减函数;为常数;

③利用导数求极值:求导数;求方程的根;列表得极值。④利用导数最大值与最小值:求的极值;求区间端点值(如果有);得最值。14.(理科)定积分⑴定积分的定义:⑵定积分的性质:①(常数);②;

③(其中。

⑶微积分基本定理(牛顿莱布尼兹公式):

⑷定积分的应用:①求曲边梯形的面积:②求变速直线运动的路程:

;③求变力做功:。

扩展阅读:导数知识点总结

导数

考试内容:导数的背影.导数的概念.

多项式函数的导数.

利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:

(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.

(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.

知识要点

导数的概念导数的几何意义、物理意义常见函数的导数导数导数的运算导数的运算法则函数的单调性导数的应用函数的极值函数的最值限limf"(x0)=lim1.导数(导函数的简称)的定义:设x0是函数yf(x)定义域的一点,如果自变量

x在x0处有增量x,则函数值y也引起相应的增量yf(x0x)f(x0);比值yf(x0x)f(x0)称为函数yf(x)在点x0到x0x之间的平均变化率;如果极xxf(x0x)f(x0)y存在,则称函数yf(x)在点x0处可导,并把这个极limx0xx0x限叫做yf(x)在x0处的导数,记作f"(x0)或y"|xx0,即

f(x0x)f(x0)y.limx0xx0x

-1-

注:①x是增量,我们也称为“改变量”,因为x可正,可负,但不为零.②以知函数yf(x)定义域为A,yf"(x)的定义域为B,则A与B关系为AB.2.函数yf(x)在点x0处连续与点x0处可导的关系:

⑴函数yf(x)在点x0处连续是yf(x)在点x0处可导的必要不充分条件.可以证明,如果yf(x)在点x0处可导,那么yf(x)点x0处连续.事实上,令xx0x,则xx0相当于x0.于是limf(x)limf(x0x)lim[f(xx0)f(x0)f(x0)]

xx0x0x0lim[x0f(x0x)f(x0)f(x0x)f(x0)xf(x0)]limlimlimf(x0)f"(x0)0f(x0)f(x0).x0x0x0xx⑵如果yf(x)点x0处连续,那么yf(x)在点x0处可导,是不成立的.例:f(x)|x|在点x00处连续,但在点x00处不可导,因为时,

yyy不存在.1;当x<0时,1,故limx0xxxy|x|,当x>0xx注:①可导的奇函数函数其导函数为偶函数.

②可导的偶函数函数其导函数为奇函数.3.导数的几何意义:

函数yf(x)在点x0处的导数的几何意义就是曲线yf(x)在点(x0,f(x))处的切线的斜率,也就是说,曲线yf(x)在点P(x0,f(x))处的切线的斜率是f"(x0),切线方程为yy0f"(x)(xx0).4.求导数的四则运算法则:

(uv)"u"v"yf1(x)f2(x)...fn(x)y"f1"(x)f2"(x)...fn"(x)

(uv)"vu"v"u(cv)"c"vcv"cv"(c为常数)

vu"v"uu(v0)2vv"注:①u,v必须是可导函数.

②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它

们的和、差、积、商不一定不可导.

例如:设f(x)2sinx,g(x)cosx,则f(x),g(x)在x0处均不可导,但它们和

2x2x

f(x)g(x)

sinxcosx在x0处均可导.

5.复合函数的求导法则:fx"((x))f"(u)"(x)或y"xy"uu"x复合函数的求导法则可推广到多个中间变量的情形.6.函数单调性:

⑴函数单调性的判定方法:设函数yf(x)在某个区间内可导,如果f"(x)>0,则

yf(x)为增函数;如果f"(x)<0,则yf(x)为减函数.

⑵常数的判定方法;

如果函数yf(x)在区间I内恒有f"(x)=0,则yf(x)为常数.

注:①f(x)0是f(x)递增的充分条件,但不是必要条件,如y2x3在(,)上并不是都有f(x)0,有一个点例外即x=0时f(x)=0,同样f(x)0是f(x)递减的充分非必要条件.

②一般地,如果f(x)在某区间内有限个点处为零,在其余各点均为正(或负),那么f(x)在该区间上仍旧是单调增加(或单调减少)的.

7.极值的判别方法:(极值是在x0附近所有的点,都有f(x)<f(x0),则f(x0)是函数f(x)的极大值,极小值同理)当函数f(x)在点x0处连续时,

①如果在x0附近的左侧f"(x)>0,右侧f"(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f"(x)<0,右侧f"(x)>0,那么f(x0)是极小值.

也就是说x0是极值点的充分条件是x0点两侧导数异号,而不是f"(x)=0①.此外,函数不可导的点也可能是函数的极值点②.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①:若点x0是可导函数f(x)的极值点,则f"(x)=0.但反过来不一定成立.对于可导函数,其一点x0是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数yf(x)x3,x0使f"(x)=0,但x0不是极值点.

②例如:函数yf(x)|x|,在点x0处不可导,但点x0是函数的极小值点.8.极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.

注:函数的极值点一定有意义.9.几种常见的函数导数:

n)"coxs(arcxs)i"nI.C"0(C为常数)(six11x2

"x)os(xn)"nxn1(nR)s"sinx(arcc(cox)11x2

1"11"(arctx)anII.(lnx)(loagx)loage

xxx21"(ex)"ex

(arcoxt)"1x21(ax)"axlna

III.求导的常见方法:①常用结论:(ln|x|)".

②形如y(xa1)(xa2)...(xan)或y化求代数和形式.

③无理函数或形如yxx这类函数,如yxx取自然对数之后可变形为lnyxlnx,

y"1对两边求导可得lnxxy"ylnxyy"xxlnxxx.

yx(xa1)(xa2)...(xan)两边同取自然对数,可转

(xb1)(xb2)...(xbn)1x

友情提示:本文中关于《函数与导数知识点总结》给出的范例仅供您参考拓展思维使用,函数与导数知识点总结:该篇文章建议您自主创作。

来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


函数与导数知识点总结》由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
链接地址:http://www.bsmz.net/gongwen/578817.html
相关文章